

UNIFACS - Cursos de Engenharia

Disciplina: Cálculo Integral

Ano: 2013

4ª Lista de Exercícios - 2013.2

1) Determine o domínio das funções abaixo e represente graficamente:

a)
$$f(x, y) = \sqrt{y^2 - x}$$
.

a)
$$f(x,y) = \sqrt{y^2 - x}$$
.
b) $f(x,y) = \sqrt{y^2 - 4} \cdot \ln(x - y)$.
c) $f(x,y) = \sqrt{y - x} - \sqrt{1 - x}$

c)
$$f(x, y) = \sqrt{y - x} - \sqrt{1 - x}$$

d)
$$f(x,y) = \ln \left[\frac{x^2 + y^2 - 1}{x} \right]$$
.

d)
$$f(x,y) = \ln \left[\frac{x^2 + y^2 - 1}{x} \right]$$
. e) $f(x,y) = \frac{1}{x^2 - 1} + \sqrt{y - x^2}$

2) Para esboçar o gráfico das funções abaixo determine o domínio; determine e trace as interseções da superfície com os planos coordenados; determine e trace as curvas de nível;

a)
$$f(x,y) = 16 - x^2 - y^2$$
.
b) $f(x,y) = 9x^2 + 4y^2$.
c) $f(x,y) = x^2$.

b)
$$f(x,y) = 9x^2 + 4y^2$$
.

c)
$$f(x,y) = x^2$$
.

d)
$$f(x,y) = 8 - 2x - 4y$$
.
e) $f(x,y) = 1 - y^2$

e)
$$f(x,y) = 1 - y^2$$

3) Se T(x,y) for a temperatura em um ponto (x,y) sobre uma placa lisa de metal no plano XOY, então as curvas de nível de T são chamadas de curvas isotérmicas. Todos os pontos sobre tal curva têm a mesma temperatura. Suponha que uma placa ocupa o 1° quadrante e T(x,y) = xy.

- a) Esboce as curvas isotérmicas sobre as quais T = 1 e T = 2.
- b) Uma formiga, inicialmente sobre o ponto (1, 4), anda sobre a placa de modo temperatura ao longo de sua trajetória permanece constante. Qual é a trajetória tomada pela formiga e qual é a temperatura ao longo de sua trajetória?

4) Se V(x,y) for a voltagem ou potencial sobre um ponto (x,y) no plano XOY, então as curvas de nível de V são chamadas de curvas equipotenciais. Ao longo de tal curva a voltagem permanece constante. Dado que $V(x,y) = \frac{8}{\sqrt{16 + x^2 + y^2}}$, identifique a curva equipotencial na qual V = 1.

5) Para as funções abaixo, calcule as derivadas parciais no ponto P_0 indicado.

a)
$$f(x,y) = e^{x} \ln(xy)$$
; $P_{o}(1,2)$.

b)
$$f(x, y) = x \cos[(x/y) + \pi]; P_0(0,1).$$

c)
$$f(x,y) = y^2 \ln(x^2 + y^2), P_0(0,1).$$

d)
$$f(x,y) = (x^2 - y^2)/(x^2 + y^2)$$
; $P_0(1,1)$.

e)
$$f(x, y) = arctg(y/x), P_o(2,2).$$

f)
$$f(x,y) = e^x \ln(x+y)$$
; $P_0(1,2)$.

g)
$$g(x,y,z) = \sqrt{x} + \sin^2(y) t g(z)$$
, $P_o(4,\pi/4,\pi/4)$. h) $g(x,y,z) = (x^2 + y^2 + z^2)/(xyz)$; $P_o(1,1,1)$.

h)
$$g(x, y, z) = (x^2 + y^2 + z^2)/(xyz); P_o(1,1,1)$$

- 6) Considere a função $z = \frac{xy^2}{x^2 + y^2}$. **Verifique** se a equação $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z$ é verdadeira $\forall (x,y) \neq (0,0)$.
- 7) Determine o coeficiente angular da reta tangente no ponto (-1,1,5) à curva obtida pela interseção da superfície $z = x^2 + 4y^2$ com plano: a) x = -1; b) y = 1.
- 8) A área A da superfície lateral de um cone circular reto de altura h e raio da base r é dada por. $A = \pi r \sqrt{h^2 + r^2}$.
- a) Se r é mantido fixo em 3 cm, enquanto h varia, encontre a taxa de variação de A em relação a h, no instante em que h = 7cm.
- b) Se h é mantido fixo em 7cm, enquanto r varia, encontre a taxa de variação de A em relação a r, no instante em que r=3cm.
- 9) Um ponto move-se ao longo da interseção do parabolóide elíptico $z = x^2 + 3y^2$ e do plano x = 2. A que taxa está variando z em relação a y quando o ponto está em (2,1,7).
- 10) Uma placa de metal aquecida está situada em um plano XOY de modo que a temperatura T no ponto (x,y) é dada por $T(x,y)=10(x^2+y^2)^2$. Determine a taxa de variação de T em relação à distância percorrida ao longo da placa a partir do ponto (1,2), nas direções positivas de:
- a) OX. b) OY.
- 11) Verifique se as derivadas parciais de segunda ordem mistas (f_{xy} e f_{yx}) são iguais.
- a) $f(x,y) = 4x^2 8xy^4 + 7xy 3$. b) $f(x,y) = \sqrt{x^2 + y^2}$.
- 12) **Mostre** que a função u(x,t) = sen(x-Ct)é uma solução da **equação da onda** $\frac{\partial^2 u}{\partial t^2} = C^2 \frac{\partial^2 u}{\partial x^2}.$
- 13) **Verifique** se as funções abaixo satisfazem a **equação de Laplace** $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0 \text{ para todo}$

x e y.
a)
$$z = x^3 + x^2 + y^2$$
.

b)
$$z = e^{x} sen(y) + e^{y} cos(x)$$
.

- 14) Mostre que a função $z = e^{-t} sen\left(\frac{x}{C}\right)$, C constante, satisfaz a **equação do calor** $\frac{\partial z}{\partial t} = C^2 \frac{\partial^2 z}{\partial x^2}$.
- 15) Usando a regra da cadeia encontre as derivadas parciais das seguintes funções:

a)
$$z = 4x^3 - 3x^2y^2$$
; $\begin{cases} x = u\cos v \\ y = v senu \end{cases}$; $\frac{\partial z}{\partial u} = \frac{\partial z}{\partial v}$ b) $z = ln(u^2 + v^2)$; $\begin{cases} u = x^2 + y^2 & \frac{\partial z}{\partial x} \\ v = 2x^2 + 3xy & \frac{\partial z}{\partial x} \end{cases}$ e $\frac{\partial z}{\partial y}$

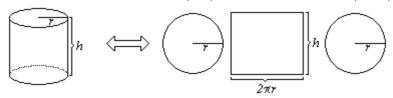
16) Determine a derivada total em cada caso

a)
$$z = \frac{x}{y}$$
; $\begin{cases} x = e^t \\ y = \ln t \end{cases}$;

b)
$$z = u^v$$
;
$$\begin{cases} u = \operatorname{sen} x \\ v = \cos x \end{cases}$$

17) O raio r e a altura h de um cilindro circular reto aumentam à razão de 2 cm/min e 6 cm/min, respectivamente. Num determinado instante sabe-se que r=8cm e h=14cm. A que taxa a área da superfície total está variando neste instante?

Obs.: A área da superfície total do cilindro é $S(r,h) = 2\pi r^2 + 2\pi r h = 2\pi r (r+h)$.



18) O comprimento \mathbf{I} , a largura \mathbf{w} e a altura \mathbf{h} de uma caixa variam com o tempo. As arestas \mathbf{I} e \mathbf{w} estão *aumentando* a uma taxa de 0.2m/s, ao passo que \mathbf{h} está *diminuindo* a uma taxa de 0.3m/s. Num certo instante as dimensões da caixa são $\mathbf{I} = 1m$, $\mathbf{w} = 2m$ e $\mathbf{h} = 2m$. Neste instante, como está variando o volume da caixa?

19) A altura de um cone circular reto é 10cm e está aumentando a uma taxa de 2cm/s. O raio da base é 15cm e está diminuindo de 1cm/s. a que taxa está variando o volume em relação ao tempo, nesse instante. (O volume do cone é um terço da área da base vezes a altura).

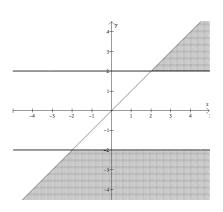
20) Um circuito elétrico simples consiste em um resistor R e uma força eletromotriz V. Em certo instante, a força eletromotriz é 100v e aumenta à taxa de 3 volts/min, enquanto a resistência é de 50 ohms e decresce à razão de 2 ohms/min. A que taxa varia a corrente I (em amperes) nesse instante, sabendo que, pela lei de Ohm, V = RI?

Respostas:

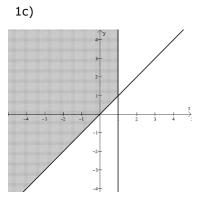
1a)



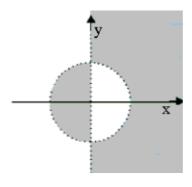
1 b)



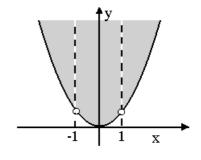
A reta y = x não pertence à região



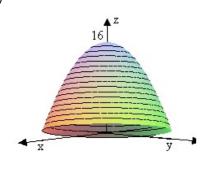
1d)



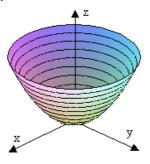
1e)



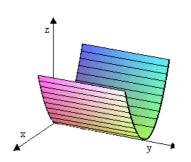
2a)



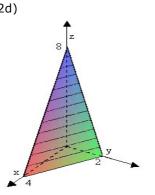
2b)



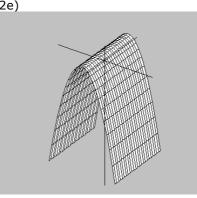
2c)



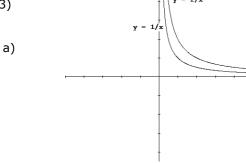
2d)



2e)



3)



) O caminho é xy = 4 e a temperatura T = 4

4) A curva é $x^2 + y^2 = 48$ (circunferência).

- 6) sim. 7) a) 8; b) -2. 8) a) $\frac{21\pi}{\sqrt{58}}$. b) $\frac{67\pi}{\sqrt{58}}$. 9) 6 10) a) 200; b) 400

- 11) a) $f_{xy} = f_{yx} = -32y^3 + 7;$ b) $f_{xy} = f_{yx} = -xy(x^2 + y^2)^{-3/2};$ 13) a) não;
 - b)sim

15) a) $\frac{\partial z}{\partial u} = (12x^2 - 6xy^2)\cos v - 6x^2yv\cos u$; $\frac{\partial z}{\partial v} = (12x^2 - 6xy^2)(-u \sin v) - 6x^2y \sin u$

b)
$$\frac{\partial z}{\partial x} = \frac{2u}{u^2 + v^2} 2x + \frac{2v}{u^2 + v^2} (4x + 3y); \quad \frac{\partial z}{\partial y} = \frac{2u}{u^2 + v^2} 2y + \frac{2v}{u^2 + v^2} 3x$$

- 16) a) $\frac{dz}{dt} = \frac{e^t}{\ln t} \frac{e^t}{t \ln^2 t}$; b) $\frac{dz}{dx} = \cos^2 x (\sin x)^{\cos x 1} (\sin x)^{\cos x} \ln(\sin x) \sin x$
- 17) $216\pi \text{ cm}^2/\text{min}$.
- 18) 0,6 m³/s;
- 19) $50\pi \text{cm}^3/\text{s}$
- 20) 0,14 A/min.