LISTA DE EXERCÍCIOS CÁLCULO NUMÉRICO

Prof. ADRIANO CATTAI

Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles

01

Mudança de Base e Erros

(Atualizada em 6 de março de 2016)

	Nome: Data:/
	Q 1 Com base na leitura do primeiro capítulo do livro de Sperandio, explique o conceito de:
·	(a) problema numérico; (c) algoritmo;
	(b) método numérico; (d) iteração.
	Q 2 Nos itens (a) e (b), determine o erro absoluto (E_A) e o erro relativo (E_R), em que \overline{x} representa o valor exato e x o valor aproximado. No item (c) compare os erros obtidos.
	(a) $\overline{x} = 2.345,713 \mathrm{e} \ x = 2,345,000;$
	(b) $\overline{x} = 1,713 \text{ e } x = 1,000;$
	(c) Os erros absolutos são iguais? E os relativos? O que podemos concluir com o E_R ?
	Q 3 Determine, com nove casas decimais, o E_A e o E_R no cálculo da área de um círculo, cujo comprimento do raio é $100~m$, odontado os seguintes valores para π :
	(a) $\pi = 3$; (b) Considere $\pi = 3,14$; (c) Considere $\pi = 3,1416$; (d) Considere $\pi = 3,14159$.
	Q 4 Sejam $x=0$, 66667, $y=0$, 66668 e $z=0$, 66669 aproximações para 2/3. Determine E_A e E_R em x , em y e em z .
	${f Q}$ 5 Os números $x=10,875$ e $y=0,125$ encontram-se na base dez. Coverta-os para binário.
	${f Q}$ 6 O número $x=6,5$ está representado na base dez. Represente-o nas bases três e quatro.
	Q 7 Verifique se é possível representar $x = 5.391$ e $y = 0,0003$ no sistema de ponto flutuante $F(10,6,-2,2)$.
	Q 8 Represente o número $x = 1,125$ no sistema de ponto flutuante $F(2,3,-1,2)$, por corte e por arredondamento. Em seguida, após corte e arredondamento, volte para a base dez e compare o resultado.
	Q 9 Sejam os números $a=0,333333$; $b=0,123952$; $c=0,348446$ e $d=0,\overline{6}$. Represente-os no sistema $F(10,4,-98,100)$, por corte e por arredondamento.
	Q 10 Considere as funções $f(x) = e^x$ e $g(x) = \cos(x)$ suas representações por séries de Taylor
	$e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$ e $\cos(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n \cdot x^{2n}}{(2n)!}$

Determine o valor de e e $\cos(1)$ usando (a) cinco primeiros termos da série e (b) seis primeiros termos; (c) Obtenha, nos odis casos, E_A e E_R .

1 Respostas dos Exercícios

☑ Identificando algum erro nas respostas apresentadas, ficarei muito grato com sua coleboração enviando seu comentário para acattai@uneb.br ou, preferencialmente, me informe pessoalmente em sala! Os que não estão com respostas, iremos gabaritar em sala. Obrigado!

- **Q 2** (a) $E_A = 0.713$, $E_R = 0.00030396$; (b) $E_A = 0.713$, $E_R = 0.416229$; (c) E_A iguais, E_R differentes. Em (a) o erro é de ordem 0,03% já no (b) de ordem 41,6%, ou seja, em (b) o erro foi bem mais significativo.
- **Q3** Primeiro, a área do círculo é $\overline{x} = 31.415$, 926535898 m^2 . (a) $x = 30.000 \ m^2$, $E_A = 1.415$, 926535898, $E_R = 0.045070341 \approx 0.000 \ m^2$ 4,51%; (b) $x=31.400\ m^2$, $E_A=15,926535898$, $E_R=0,000506957\approx0,05\%$; (c) $x=31.416\ m^2$, $E_A=0,073464102$, $E_R=0,000002338\approx0,0002\%$; (d) $x=31.415,9\ m^2$, $E_A=0,026535898$, $E_R=0,000000845\approx0,00008\%$.
- **Q4** ???
- **Q 5** $x = (1010, 1110)_2 \text{ e } y = (0, 001)_2.$
- **Q 6** $x = (20, 111...)_3 = (12, 20)_4.$
- **Q** 7 Não. Pois, $x = 0.539100 \times 10^4$ e $y = 0.300000 \times 10^{-3}$, em que nem 4 e nem -3 pertencem ao intervalo [-2, 2].
- **Q** 8 Como $x = 1,125 = (1,001)_2 = 0,1001 \times 2^1$, então, nesse sistema, $x = 0,100 \times 2^1$ (por corte) ou $x = 0,101 \times 2^1$ (por arredenodamento). Por corte, x = 1 e, por arredondamento, x = 1.25.
- **Q 9** a: 0,3333 e 0,3333; b: 0,1239 e ,1234; c: 0,3484 e 0,3484; d: 0,6666 e 0,6667.
- **Q 10** (a) $e \approx 2,708 \text{ e cos}(1) =???;$ (b) $e \approx ...;$