Lista de Exercícios: Relações e Funções

(Fundamentos de Matemática Elementar, Vol 1, Gelson Iezzi)

Parte I: Relações

A.93 Dados os conjuntos

$$A = \{1, 3, 4\}$$

$$B = \{-2, 1\}$$

$$B = \{-2, 1\}$$
 $C = \{-1, 0, 2\}$

representar pelos elementos e pelo gráfico cartesiano os seguintes produtos:

a)
$$A \times B$$

b)
$$B \times A$$

A.94 Dados os conjuntos

$$A = \{x \in \mathbb{R} \mid 1 \leq x \leq 3\}$$

$$B = \{x \in \mathbb{R} \mid -2 \leqslant x \leqslant 2\}$$

$$C = \{x \in \mathbb{R} \mid -4 < x \le 1\}$$

representar graficamente os seguintes produtos:

a)
$$A \times B$$

c)
$$B \times C$$

d)
$$C \times B$$

A.95 Dados os conjuntos A = $\{1, 2, 3, 4\}$ e B = $\{x \in \mathbb{R} \mid 1 \le x \le 4\}$ representar graficamente os conjuntos:

a)
$$A \times B$$

c)
$$(A \times B) \cup (B \times A)$$

A.96 Sejam os conjuntos A, B e C tais que A C B C C. Estabelecer as relações de inclusão entre os conjuntos $A \times A$, $A \times B$, $A \times C$, $B \times A$, $B \times B$, $B \times C$, $C \times A$, $C \times B$ e $C \times C$,

A.97 Sabendo que $\{(1, 2), (4, 2)\} \subseteq A^2$ e $n(A^2) = 9$, represente pelos elementos o conjunto A2.

O número de elementos de A² é igual ao quadrado do número de elementos de A, por-

$$n(A^2) = [n(A)]^2 \implies [n(A)]^2 = 9 \implies n(A) = 3.$$

Se A é um conjunto de 3 elementos, $(1, 2) \in A^2$ e $(4, 2) \in A^2$, concluímos que $A = \{1, 2, 4\}.$

Assim sendo,

$$A \times A = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (2, 4), (4, 1), (4, 2), (4, 4)\}$$

A.98 Se $\{(1,-2), (3,0)\} \subset A^2$ e $n(A^2) = 16$ então represente A^2 pelos seus elemen-

A.99 Considerando A \subseteq B, $\{(0,5), (-1,2), (2,-1)\} \subseteq A \times B$ e $n(A \times B) = 12$, represente A × B pelos seus elementos.

A.100 Pede-se:

- 1) enumerar pares ordenados
- II) representar por meio de flechas
- III) fazer o gráfico cartesiano

das relações binárias de $A = \{-2, -1, 0, 1, 2\}$ em $B = \{-3, -2, -1, 1, 2, 3, 4\}$ definidas por:

a)
$$x R y \iff x + y = 2$$

b)
$$x S y \iff x^2 = y$$

c) x T y
$$\iff$$
 $|x| = |y|$
e) x W y \iff $(x - y)^2 = 1$

b) x S y
$$\iff$$
 $x^2 = y$
d) x V y \iff x + y > 2

A.101 Dado o conjunto A = {1, 2, 3, 4, 5, 6}. Enumerar os pares ordenados e construir o gráfico cartesiano da relação R em A dada por:

$$R = \{(x, y) \in A^2 \mid mdc(x, y) = 2\}$$

A.102 Seja o conjunto A = {1, 2, 3, 4, 5, 6}. Construir o gráfico cartesiano da relação R em A definida por:

x R y \iff x e y são primos entre si.

A.103 Dado o conjunto A = {m ∈ Z | -7 ≤ m ≤ 7}. Construir o gráfico cartesiano da relação binária R em A definida por:

$$x R y \iff x^2 + y^2 = 25.$$

- A.104 Estabelecer o domínio e a imagem das seguintes relações:
 - a) {(1, 1), (1, 3), (2, 4)}
- b) {(-2, 4), (-1, 1), (3, -7), (2, 1)}
- c) $\{(2, 1), (1, -3), (5, \sqrt{2})\}$
- d) $\{(1+\sqrt{2},\sqrt{2}), (1-\sqrt{3},1)\}$
- e) $\{(3, \frac{1}{2}), (\frac{5}{2}, -1), (\frac{3}{2}, 0)\}$
- A.105 Estabelecer o domínio e a imagem das relações binárias do exercício A.100.
- A.106 Sejam os conjuntos $A = \{-2, -1, 0, 1, 2, 3, 4, 5\}$, $B = \{-2, -1, 0, 1, 2\}$ e R a relação binária de A em B definida por

$$x R y \iff x = y^2$$

Pede-se:

- a) enumerar os pares ordenados de R
- b) enumerar os elementos do domínio e da imagem de R
- c) fazer o gráfico cartesiano de R
- A.107 Se R é a relação binária de $A = \{x \in IR \mid 1 \le x \le 6\}$ em $B = \{y \in IR \mid 1 \le y \le 4 \text{ definida por }$

$$x R y \iff x = 2y$$

Pede-se:

- a) a representação cartesiana de A × B
- b) a representação cartesiana de R
- c) o domínio e a imagem de R
- A.108 Se R e S são as relações binárias de $A = \{x \in \mathbb{Z} \mid -2 \le x \le 5\}$ em $B = \{y \in \mathbb{Z} \mid -2 \le y \le 3\}$ definidas por:

$$x R y \iff 2 \text{ divide } (x - y)$$

$$x S y \iff (x - 1)^2 = (y - 2)^2$$
.

Pedem-se:

- a) as representações cartesianas de R e de S
- b) o domínio e a imagem de R e de S
- c) $R \cap S$.
- A.109 Enumerar os elementos de R-1, relação inversa de R, nos seguintes casos:

a)
$$R = \{(1, 2), (3, 1), (2, 3)\}$$

b)
$$R = \{(1, -1), (2, -1), (3, -1), (-2, 1)\}$$

c)
$$R = \{(-3, -2), (1, 3), (-2, -3), (3, 1)\}$$

A.110 Enumerar os elementos e esboçar os gráficos de R e R-1, relações binárias em

$$A = \{x \in \mathbb{N} \mid x \le 10\}$$
, nos seguintes casos:

a)
$$R = \{(x, y) \in A^2 \mid x + y = 8\}$$

b)
$$R = \{(x, y) \in A^2 \mid x + 2y = 10\}$$

c)
$$R = \{(x, y) \in A^2 \mid y = (x - 3)^2 + 1\}$$

d)
$$R = \{(x, y) \in A^2 \mid y = 2^x\}$$

A.111 Dados os conjuntos $A = \{x \in |R| \mid 1 \le x \le 6\}$, $B = \{y \in |R| \mid 2 \le y \le 10\}$ e as seguintes relações binárias:

a)
$$R = \{(x, y) \in A \times B \mid x = y\}$$

b)
$$S = \{(x, y) \in A \times B \mid y = 2x\}$$

c)
$$T = \{(x, y) \in A \times B \mid y = x + 2\}$$

d)
$$V = \{(x, y) \in A \times B \mid x + y = 7\}$$

pede-se o gráfico cartesiano dessas relações e das respectivas relações inversas.

Parte II: Funções

A.115 Qual é a notação das seguintes funções de IR em IR?

- a) f associa cada número real ao seu oposto
- b) g associa cada número real ao seu cubo
- c) hassocia cada número real ao seu quadrado menos 1
- d) k associa cada número real ao número 2

A.116 Qual é a notação das seguintes funções?

- a) f é função de Q em Q que associa cada número racional ao seu oposto adicionado
- b) g é a função de Z em Q que associa cada número inteiro à potência de base 2 desse número.
- c) h é a função de IR* em IR que associa cada número real ao seu inverso.

A.117 Seja f a função de IR em IR definida por $f(x) = x^2 - 3x + 4$. Calcular: a) f(2) b) f(-1) c) $f(\frac{1}{2})$ d) $f(-\frac{1}{3})$ e) $f(\sqrt{3})$ f) $f(1-\sqrt{2})$

A.118 Seja f a função de \mathbb{Z} em \mathbb{Z} definida por f(x) = 3x - 2. Calcular:

a) f(2)

c) f(0)

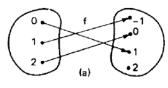
b) f(-3)

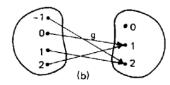
d) $f(\frac{3}{2})$

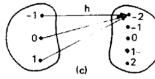
A.119 Seja f a função de IR em IR assim definida

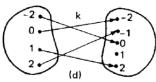
$$f(x) = \begin{cases} 1 & \text{se } x \in \mathbb{Q} \\ x+1 & \text{se } x \notin \mathbb{Q} \end{cases}$$

- a) f(3)
- b) $f(-\frac{3}{7})$ c) $f(\sqrt{2})$ e) $f(\sqrt{3} 1)$ f) f(0.75)

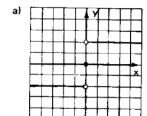

- a) f(3)d) $f(\sqrt{4})$

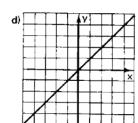

A.120 Seja a função f de IR em IR definida por $f(x) = \frac{2x-3}{5}$. Qual é o elemento do do domínio que tem $-\frac{3}{4}$ como imagem?

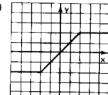

A.121 Seja a função f de $|R - \{1\}$ em |R| definida por $f(x) = \frac{3x + 2}{x - 1}$. Qual é o elemento do domínio que tem imagem 2?

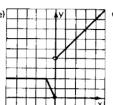

A.122 Quais são os valores do domínio da função real definida por $f(x) = x^2 - 5x + 9$ que produzem imagem igual a 3?

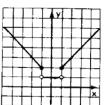
A.123 Estabelecer o domínio e a imagem das funções abaixo:

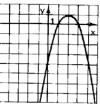


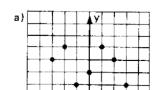




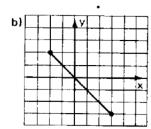

A.124 Nos gráficos cartesianos das funções abaixo representadas, determinar o conjunto ima-

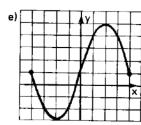


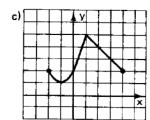


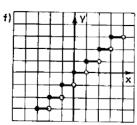









A.125 Considerando que os gráficos abaixo são gráficos de funções, estabelecer o domínic e a imagem.



A.126 Dar o domínio das seguintes funções reais:

a)
$$f(x) = 3x + 2$$

b)
$$g(x) = \frac{1}{x + 2}$$

c)
$$h(x) = \frac{x-1}{x^2-4}$$

d)
$$p(x) = \sqrt{x} - \frac{x+2}{x}$$

e)
$$q(x) = \frac{1}{\sqrt{x+1}}$$

f)
$$r(x) = \frac{\sqrt{x+2}}{2}$$

g)
$$s(x) = \sqrt[3]{2x - 1}$$

h)
$$t(x) = \frac{1}{\sqrt[3]{2x+3}}$$

e)
$$q(x) = \frac{x^2 - 4}{\sqrt{x + 1}}$$

g) $s(x) = \sqrt[3]{2x - 1}$
i) $u(x) = \frac{\sqrt[3]{x + 2}}{x - 3}$

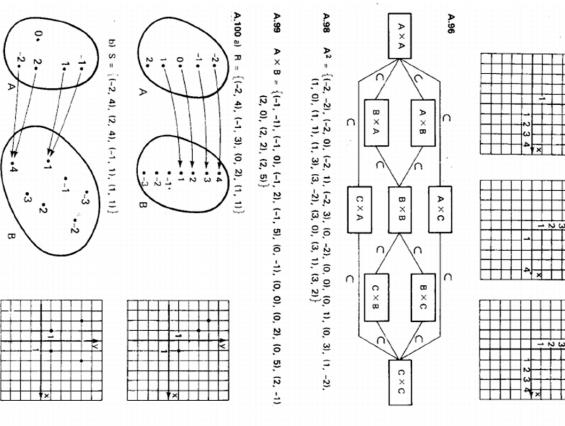
b)
$$g(x) = \frac{1}{x+2}$$

d) $p(x) = \sqrt{x-1}$
f) $r(x) = \frac{\sqrt{x+2}}{x-2}$
h) $t(x) = \frac{1}{\sqrt[3]{2x+3}}$

A.127 Sejam as funções f, g e h de IR em IR definidas por $f(x) = x^3$, $g(y) = y^3$ e . $h(z) = z^3$. Quais delas são iguais entre si?

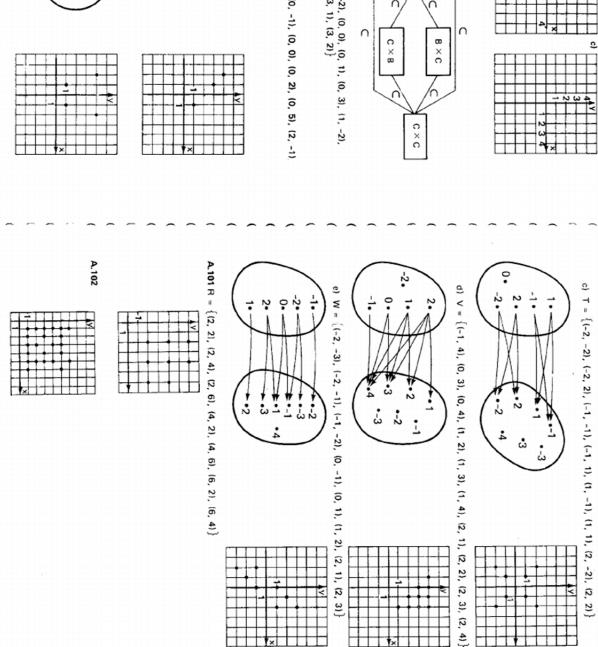
A/128 As funções: f de IR em IR definida por $f(x) = \sqrt{x^2}$ e g de IR em IR definida por g(x) = x são iguais? Justificar.

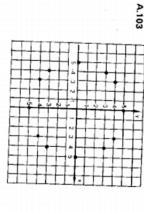
A.129 As funções f e g cujas leis de correspondência são

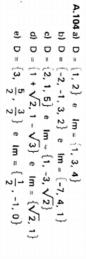

$$f(x) = \sqrt{\frac{x-1}{x+1}} \quad e \quad g(x) = \frac{\sqrt{x-1}}{\sqrt{x+1}} \quad \text{podem ser iguais? Justificar.}$$

A.130 As funções f e g de A = $\{x \in |R| \mid -1 \le x \le 0 \text{ ou } x > 1\}$ em |R|, definidas por:

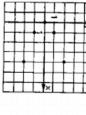
$$f(x) = \sqrt{\frac{x+1}{x^2 - x}}$$
 e $g(x) = \frac{\sqrt{x+1}}{\sqrt{x^2 - x}}$ são iguais? Justificar.

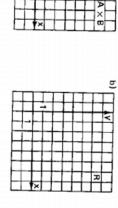

A.131 As funções:

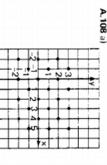

f:
$$|R \longrightarrow |R$$
 e g: $|R - \{1\} \longrightarrow |R$ são iguais? Justificar.
 $x \longmapsto x+1$ $x \longmapsto \frac{x^2-1}{x-1}$

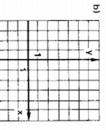


A.95 a)

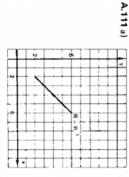

5

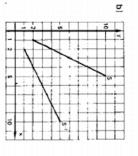


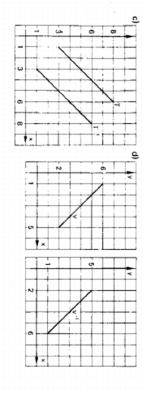

A.106 a) R = $\{(0, 0), (1, -1), (1, 1), (4, -2), (4, 2)\}$ b) D(R) = $\{0, 1, 4\}$ e Im (R) = $\{-2, -1, 0, 1, 2\}$ A.105 a) D(R) = {-2,-1,0,1} e Im (R) = {1,2,3,4} b) D(S) = {-2, -1, 1, 2} e Im (S) = {1, 4} c) D(T) = {-2, -1, 1, 2} e Im (T) = {-2, -1, 1, 2} e) $D(W) = \{-2, -1, 0, 1, 2\}$ e $Im(W) = \{-3, -2, -1, 1, 2, 3\}$ d) $D(V) = \{-1, 0, 1, 2\}$ e $Im(V) = \{1, 2, 3, 4\}$



A.107 a)


c) D(R) = $\{x \in \mathbb{R} \mid 2 \leqslant x \leqslant 6\}$ e Im (R) = $\{y \in \mathbb{R} \mid 1 \leqslant y \leqslant 3\}$





A.109 a) $R^{-1} = \{(2, 1), (1, 3), (3, 2)\}$ b) $R^{-1} = \{(-1, 1), (-1, 2), (-1, 3), (1, -2)\}$ c) $R^{-1} = \{(-2, -3), (3, 1), (-3, -2), (1, 3)\}$ c) R O S = Ø

A.110 a) $R = R^{-1} = \{(0,8), (1,7), (2,6), (3,5), (4,4), (5,3), (6,2), (7,1), (8,0)\}$ b) R = {(0, 5), (2, 4), (4, 3), (6, 2), (8, 1), (10, 0) } c) R = {(0, 10), (1, 5), (2, 2), (3, 1), (4, 2), (5, 5), (6, 10)} d) R = {(0, 1), (1, 2), (2, 4), (3, 8)} $R^{-1} = \{(10,0), (5,1), (2,2), (1,3), (2,4), (5,5), (10,6)\}$ $R^{-1} = \{(1, 0), (2, 1), (4, 2), (8, 3)\}$ $R^{-1} = \{(5,0), (4,2), (3,4), (2,6), (1,8), (0,10)\}$

CAPITULO V

A.112 a) não define função de A em B, pois o elemento 2 € A não está associado a nenhum elemento de B.

b) não define função de A em B, pois o elemento 1 ∈ A está associado a dois

c e d) define função de A em B, pois todo elemento de A está associado a um único elemento de B.

A.113 somente (d) pois o conjunto de partida é $A = \{0, 1, 2\}$ e o conjunto de chegada 6 B = {-1, 0, 1, 2}

A.114 a) é função.

b) não é função de IR em IR, pois qualquer reta vertical conduzida pelos pontos (x, 0), com x > 0, encontra o gráfico da relação em dois pontos.

d) é função c) não é função de IR em IR, pois qualquer reta vertical conduzida pelos pontos (x, 0), com $-1 \le x \le 1$, não encontra o gráfico da relação. e) é função

f) não é função de IR em IR, pois a reta vertical conduzida pelo ponto (3, 0) duzidas pelos pontos (x, 0), com $x \neq 3$, não encontram o gráfico da relação encontra o gráfico da relação em mais que dois pontos e as retas verticais con-

A.116 a) f: Q → Q A.115 a) f: IR → IR d) k: |R → |R × + -× × ↓ 2 b) g: Z → Q × → 2× b) g: IR → IR × → ×³ c c) h: R → R × → ×² - 1 h: IR* → IR

d) $f(-\frac{1}{3}) =$ 9 6 e) $f(\sqrt{3}) = 7 - 3\sqrt{3}$ f) $f(1 - \sqrt{2}) = 4 + \sqrt{2}$ b) f(-1) = 8c) $f(\frac{1}{2}) = \frac{11}{4}$

¥

A.117 a) f(2) = 2

× + -× + 1

A.118a) f(2) = 4c) f(0) = -2 f) $f(\frac{3}{2})$ não tem significado pois $\frac{3}{2} \notin \mathbb{Z}$. b) f(-3) = -11

> A.126 a) D(f) = IR**A.125** a) $D = \{-3, -2, -1, 0, 1, 2, 3\}$ A.124 a) lm = {-2, 0, 2} A.123 a) $D(t) = \{0, 1, 2\}$ e Im $(t) = \{-1, 0, 1\}$ $A.121 \times = -4$ A.122 x = 2 ou x = 3 A.119 a) f(3) = 1 e) f($\sqrt{3}$ - 1) = $\sqrt{3}$ c) $f(\sqrt{2}) = 1 + \sqrt{2}$ h) $D(t) = IR - \left\{-\frac{3}{2}\right\}$ i) $D(n) = IR - \left\{3\right\}^{\frac{3}{2}}$ e) $D(q) = \{x \in |R| \times > -1\}$ f) $D(r) = \{x \in |R| \times \ge -2 \text{ e } x \neq 2\}$ d) $D(p) = \{x \in \mathbb{R} \mid x \geqslant 1\}$ c) D(h) = IR - {2, -2} b) D(g) = IR - {-2} f) D = $\{x \in \mathbb{R} \mid -3 \leq x \leq 3\}$ e) D = {x ∈ IR | -4 ≤ x ≤ 4} d) D = $\{x \in \mathbb{R} \mid -3 \leqslant x \leqslant 5\}$ c) D = {x ∈ IR | -2 ≤ x ≤ 4} b) D = {x ∈ IR | -2 ≤ x ≤ 3} f) Im = {y ∈ IR | y ≤ 1} e) Im = {y ∈ IR | 0 ≤ y ≤ 2 ou y > 4} c) $Im = \{y \in IR \mid y = 1 \text{ ou } y \geqslant 2\}$ d) Im = iRd) $D(k) = \{-2, 0, 1, 2\}$ e $Im(k) = \{-2, -1, 0, 2\}$ c) $D(h) = \{-1, 0, 1\}$ e im $(h) = \{-2\}$ b) $D(g) = \{-1, 0, 1, 2\}$ e $Im(g) = \{1, 2\}$ g) D(s) = IR e lm * {-3, -2, -1, 0, 1, 2} e im = $\{y \in \mathbb{R} \mid -3 \leqslant y \leqslant 5\}$ e Im = {y ∈ IR | 1 ≤ y ≤ 5} e Im = {y ∈ IR | -3 ≤ y ≤ 2} e Im = [1, 2, 3, 4] b) Im = $\{y \in \mathbb{R} \mid -2 \leqslant y \leqslant 2\}$ $lm = \{ y \in |R| | 1 \leq y \leq 3 \}$ d) $f(\sqrt{4}) = 1$ f) f(0,75) = 1b) $f(-\frac{3}{7}) = 1$

A.127 Todas são iguais, pois são todas funções de IR em IR e associam cada número real

A.128 Não são iguais, pois para $\times < 0$ temos $\sqrt{x^2} \neq x$.

A.129 Somente serão iguais se forem funções de A em IR onde A é qualquer subconjunto de $\{x \in |R| | x \geqslant 1\}$.

A.130 São iguais, pois $\sqrt{\frac{x+1}{x^2-x}} = \frac{\sqrt{x+1}}{\sqrt{x^2-x}}$ para $-1 < x \le 0$ ou x > 1.

A.131 Não são iguais, pois não têm o mesmo domínio

A.132 a) $S = \{x \in \mathbb{R} \mid x > -4\}$ b) S = {x ← IR | x < -10} c) $S = \{x \in \mathbb{R} \mid x > -\frac{-3}{4}\}$