Prof. Adriano Cattai www.cattai.mat.br/epa

ENSINANDO PARA APRENDER – EPA

UNIVERSIDADE: UNIFACS SEMESTRE: 2011.2

PROFESSOR: Adriano Cattai DISCIPLINA: Cálculo Diferencial

Grupo: ______
Turma:

ATIVIDADE 02: REGRAS DE DERIVAÇÃO E PROBLEMAS DE OTIMIZAÇÃO

Conteúdo: Regras de Derivação; Regra da Cadeia; Máximos e Mínimos de Funções

Objetivos: \diamond Entender as regras das funções elementares;

- ♦ Utilizar as regras de derivação para obter a derivada de uma função elementar;
- Derivar Funções Compostas Regra da Cadeia;
- ♦ Usar a derivada para estudar a monotonicidade de uma função;
- Usar a derivada para determinar os extremos (máximos e mínimos) de uma função;
- \diamond Usar a derivada para resolver problemas de otimização.

Orientações para desenvolvimento:

- 1. Desenvolver a atividade em folhas de papel reciclado de tamanho A4, utilizando canetas (coloridas ou não) ou lápis;
- 2. Não responder na folha de questões e qualquer "parte ilegível" será considerada como errada;
- 3. A atividade deve ser, obrigatoriamente, escrita por todos os integrantes do grupo;
- 4. Não use somente símbolos matemáticos, explique os passos da solução em Português claro e sucinto;
- 5. Todas as figuras devem ser acompanhadas de textos explicativos;
- 6. A atividade será válida apenas quando resolvida e acompanhada do relatório de execução e dos arquivos digitais de registro de companhada do relatório de execução e dos arquivos digitais de registro de companhada do relatório de execução e dos arquivos digitais de registro de companhada do relatório de execução e dos arquivos digitais de registro de companhada do relatório de execução e dos arquivos digitais de registro de companhada do relatório de execução e dos arquivos digitais de registro de companhada do relatório de execução e dos arquivos digitais de registro de companhada do relatório de execução e dos arquivos digitais de registro de companhada do relatório de execução e dos arquivos digitais de registro de companhada do relatório de execução e dos arquivos digitais de registro de companhada do relatório de execução e dos arquivos digitais de registro de companhada do relatório de execução de companhada do relatório de execução de companhada de companhada

Ouestões:

- 1. Dada a função $f(x) = x^2 x 2$ determine a equação da reta tangente e a equação da reta normal ao gráfico de f no ponto de abscissa 1. Desenhe, num mesmo sistema de coordenadas, o gráfico de f e as duas retas.
- 2. Dada a função $f(x) = -x^2 2x + 3$, caso exista, determine a equação da reta tangente a esta curva que seja normal à reta r: y 2x = 6. Desenhe, num mesmo sistema de coordenadas, o gráfico de f e a da reta tangente.
- 3. Seja $f(x) = \frac{1}{\sqrt{x}}$ uma curva. Determine a equação da reta tangente no ponto no ponto da abscissa x = 1. Quais os os pontos da curva em que a reta tangente à curva tem inclinação de 60° ?
- **4.** Seja $f(x) = \frac{x}{x-1}$ uma curva. Se possível, determine, tanto a equação da reta tangente quanto a equação da reta normal a curva no ponto P(-2; 2/3).
- 5. Uma função hiperbólica é uma das seguintes funções: seno hiperbólico, cosseno hiperbólico, tangente hiperbólica, secante hiperbólica, cossecante hiperbólica e cotangente hiperbólica. Essas funções são definidas em termos das funções exponenciais e, portanto, suas derivadas se resumem na derivação de funções exponenciais: $\operatorname{senh}(x) = \frac{e^x e^{-x}}{2}$, $\cosh(x) = \frac{e^x + e^{-x}}{2}$ e as demais a partir destas. Assim, usando a regras de derivação, mostre que:

(a)
$$[\operatorname{senh}(x)]' = \cosh(x)$$
; (c) $[\operatorname{tgh}(x)]' = \operatorname{sech}^2(x)$; (e) $[\operatorname{sech}(x)]' = -\operatorname{sech}(x) \cdot \operatorname{tgh}(x)$;

(b)
$$[\cosh(x)]' = \operatorname{senh}(x);$$
 (d) $[\coth(x)]' = -\operatorname{cossech}^2(x);$ (f) $[\operatorname{cossech}(x)]' = -\operatorname{cossech}(x) \cdot \coth(x).$

¹ Modelo disponível em www.cattai.mat.br/epa.

² Imagens em vídeo ou em fotografias, preferencialmente fotografias entregue num CD.

Atividade 02

6. Enuncie o teorema da Regra da Cadeia. Com ele derive as funções abaixo:

(a)
$$y = (3x^2 - 1)^{12}$$
;

(c)
$$y = \sqrt[3]{\sin(x) - 2x}$$

(e)
$$y = \operatorname{sen}^2(x)$$
;

$$(g) y = \sqrt{1 + \sqrt{x}}$$

(b)
$$y = \frac{(x-1)^3}{(x^2+1)^6}$$

(d)
$$y = \frac{x^3}{\sqrt[5]{(x-2)^3}}$$
;

(f)
$$y = \sqrt{tg(x^2 + 1)};$$

(a)
$$y = (3x^2 - 1)^{12}$$
; (c) $y = \sqrt[3]{\sin(x) - 2x}$; (e) $y = \sin^2(x)$; (g) $y = \sqrt{1 + \sqrt{x}}$; (b) $y = \frac{(x - 1)^3}{(x^2 + 1)^6}$; (d) $y = \frac{x^3}{\sqrt[5]{(x - 2)^3}}$; (f) $y = \sqrt{\operatorname{tg}(x^2 + 1)}$; (h) $y = \sqrt{\frac{1 + \sin(x)}{1 - \sin(x)}}$.

7. Para cada um dos itens a seguir, determine:

(a)
$$f'(3)$$
, sendo $f(5+2x) + f(2x^2+1) = 4x^2 + 4x + 2$;

(b)
$$f'(0)$$
, sendo $f\left(\text{sen}(x) - \frac{\sqrt{3}}{2}\right) = f(3x - \pi) + 3x - \pi, x \in [-\pi/2, \pi/2];$

(c)
$$(g \circ f \circ h)'(2)$$
, em que $f(0) = 1$, $h(2) = 0$, $g'(1) = 5$, $f'(0) = h'(2) = 2$;

(d) a função
$$g$$
, em que $(f \circ g)'(x) = 24x + 34$, $f(x) = 3x^2 + x - 1$ e $g'(x) = 2$.

8. Para cada função abaixo determine os intervalos de crescimento ou decrescimento.

(a)
$$f(x) = \frac{4 - x^2}{x^2}$$
;

(c)
$$f(x) = \frac{x^2 - 1}{x - 1}$$

(e)
$$f(x) = \frac{x}{e^x}$$
;

(a)
$$f(x) = \frac{4 - x^2}{x^2}$$
; (c) $f(x) = \frac{x^2 - 1}{x - 1}$; (e) $f(x) = \frac{x}{e^x}$; (b) $f(x) = \frac{x^2 - 2x}{x + 1}$; (d) $f(x) = \frac{x^2 + 1}{x^2}$; (f) $f(x) = \frac{5x}{x^2 - 4}$.

(d)
$$f(x) = \frac{x^2 + 1}{x^2}$$

(f)
$$f(x) = \frac{5x}{x^2 - 4}$$

9 (Problemas de otimização).

- (a) Prove que se o produto de dois números positivos é constante, a soma é mínima quando os dois números são iguais.
- (b) Dado um fio de arame de comprimento L como devemos moldá-lo, em forma de um retângulo, para que tenhamos a maior área possível? Qual a área deste retângulo? (Resp. $L^2/16$)
- (c) Uma reta variável passando pelo ponto P(1,2) intersecta o eixo x em A(a,0) e o eixo y em B(0,b). Determine o triângulo *OAB*, de área mínima, para *a* e *b* positivos. (Resp. base 2 e altura 4)
- (d) Dentre os retângulos com base no eixo x e vértices superiores sobre a parábola $y = 12 x^2$, determine o de área máxima. (Resp. base 4 e altura 8)
- (e) Um caixa com fundo quadrado e sem tampa deve ser formada com couro. Quais devem ser as dimensões da caixa que requerem a quantidade mínima de couro, sabendo que a sua capacidade é 32 litros? (Lembre-se que $1\ell = 1dm^3$) (Resp. $4 \times 4 \times 2dm^3$)
- (f) Um cartaz deve conter $50cm^2$ de matéria impressa com duas margens de 4cm em cima e embaixo e duas margens laterais de 2cm cada. Determine as dimensões externas do cartaz de modo que a sua área total seja mínima. (Resp. 9 × 18)
- (g) Um tanque de base quadrada, sem tampa, deve conter 125cm³. O custo, por metro quadrado, para a base é de R\$8,00 e para os lados R\$4,00. Encontre as dimensões do tanque para que o custo seja mínimo. (Resp. base $5 \times 5cm^2$ e altura 5cm)
- (h) Desejamos fazer uma caixa retangular aberta com um pedaço de papelão de 8cm de largura e 15cm de comprimento, cortando um pequeno quadrado em cada canto e dobrando os lados para cima. Determine as dimensões da caixa de volume máximo. (Resp. 5/3, 14/3, 35/3)

Texto composto em \LaTeX 2 \mathcal{E} , APC, 5 de outubro de 2011